

1

Addressing the Security Trust
Gap in a Mobile + API World

Whitepaper

by

Haltdos

Copyright © 2022 Haltdos Inc.

All rights reserved. Haltdos and certain other marks are registered
trademarks of Haltdos Inc, and other Haltdos names herein may also be
registered and/or common law trademarks of Haltdos. All other product or
company names may be trademarks of their respective owners. Performance
and other metrics contained herein were attained in internal lab tests
under ideal conditions, and actual performance and other results may
vary. Network variables, different network environments, and other
conditions may affect performance results. Nothing herein represents any
binding commitment by Haltdos, and Haltdos disclaims all warranties,
whether express or implied, except to the extent Haltdos enters a binding
written contract, signed by Haltdos’ General Counsel, with a purchaser
that expressly warrants that the identified product will perform
according to certain expressly-identified performance metrics and, in
such event, only the specific performance metrics expressly identified
in such binding written contract shall be binding on Haltdos. For absolute
clarity, any such warranty will be limited to performance in the same
ideal conditions as in Haltdos’ internal lab tests. Haltdos disclaims in
full any covenants, representations, and guarantees pursuant hereto,
whether express or implied. Haltdos reserves the right to change, modify,
transfer, or otherwise revise this publication without notice, and the
most current version of the publication shall be applicable.

	

Current security and anti-fraud
measures do not adequately
address the needs of the mobile
app world. Sensitive data that
is being shared through APIs
are still subject to exploits
such as app impersonation,
reverse engineering of API
protocols, spoofing
transactions and using bots and
emulators to access backend API
servers. Haltdos Secure Mobile
App Protection creates a
trusted environment that
protects your APIs and your
business by providing
additional authentication —
authenticating app instances,
not users. By ensuring that the
mobile app connecting through
an API is a genuine, untampered
instance, fraudulent
transactions, malicious
scripts, and bot attacks are
blocked at the source.

Traditional Measures Don’t
Provide Enough Protection

Mobile apps have become the
digital touchpoint of choice,
overtaking web browser usage.
This mobile app first,
engagement model and the
increased sophistication of the
hackers opens up new vectors for
security risk. Many security
approaches originally developed
for the desktop web channel are
not sufficient for the mobile
API economy. With web browsers,
the client side platform is
inherently insecure since code
must be provided in the clear and
run in an untrusted environment.
Therefore, security sensitive
logic has always been run
in the web backend. However,
mobile app users expect a
responsive, frictionless

experience so there has been a
migration of business logic and
security sensitive code to the
apps themselves. This has
resulted in a corresponding
rise in the complexity and
sensitivity of the data flow
between the mobile app and the
APIs of supporting backend
servers.

These trends have caused a
concerning trust gap to emerge
in the mobile app world. End-to-
end encryption provides little
security when one of the ends may
have been compromised. A
significant and growing
vulnerability is the ability of
criminals and fraudsters to
reverse engineer API protocols
and then spoof transactions as
if they had been generated by a
genuine mobile app. This can be
achieved by tampering with the
app code itself or by
engineering new applications
that impersonate the real app.
Static credentials, encryption
keys, API keys or other secrets
embedded inside the app can be
discovered through reverse
engineering. Bad actors can
then leverage them, often
alongside other stolen
credentials, to gain access to
sensitive digital assets or
disrupt normal operations by
scaling malicious access using
botnets and mobile emulators
hosted in the cloud.

Communication traffic from a
remote client to a server should
not be trusted to emanate from a
genuine mobile app, even if it
presents its credentials and
initial behaviour as such. It
needs to be verified as genuine.
Protection focused only on the
app provides little protection
against this type of exploit. If
app hardening or anti-tamper
approaches are breached, the
server doesn’t know about it and
is powerless to block the bad

traffic. A dynamic
authentication protocol is
needed to check the veracity of
the client software itself and
then communicate this status
live to the server in an un-spoof
able way — closing the very real
trust gap in today’s mobile
first world.

Current Approaches are not
Sufficient

App security efforts have been
focused on signature-based
behavioural approaches and
anti-tampering solutions
applied to the app code. The
use of Transport Level Security
(TLS) to encrypt communications
between the mobile app and the
server is also a common
security measure which does
help prevent trivial tampering
and eavesdropping of the data.
Certificate pinning in the app
allows a mobile app to trust
that it is communicating with a
genuine server without a Man-
in-the-Middle (MitM)
eavesdropping attack. However,
use of this one-way TLS does
not provide a server with
authentication that the client
software it is communicating
with is genuine. Attacker
scripts are able to launch TLS
sessions with the server even
through encrypted channels.

Signature-based Approaches

Signature-based approaches rely
on capturing large amounts of
data and then applying rules
based on known patterns. This
attempts to differentiate
between real data traffic from
apps as opposed to bots or
scripts attempting to spoof the
traffic. The failing in this
approach is its inability to
prevent new styles of attack
for which signatures have not

been captured. Constant manual
analysis and maintenance is
required to keep up to date
with the latest attack vectors.
Moreover, certain attacks
performed at a low velocity are
intrinsically very difficult to
distinguish from genuine
traffic. In other words, this
is a negative security model
that enables traffic by default
and attempts to detect
irregular or unusual usage. A
better solution is a positive
security model that provides
definitive authentication of
the traffic up-front and at
source.

The situation becomes complex
if the same APIs are being used
by Web client as well as mobile
client. With high degree of
false positives, this approach
leaves many genuine
interactions blocked and bot
attacks unmitigated.

Anti-Tampering Efforts

Anti-tamper techniques may be
employed to make it more
difficult to tamper with or
reverse engineer the operation
of a mobile app. The use of
anti-tamper with code guards
does harden the app, but cannot
prevent an attacker
impersonating the traffic of a
real app, especially if they
have been able to mount MitM
analysis of the traffic being
communicated. Current anti-
tamper technologies can also be
difficult to integrate into
existing app code, can be quite
invasive in the development
process and can cause
measurable performance
degradation. Often the use of
these technologies is somewhat
misdirected. The digital assets
of value are on the server, not
in the app, so the focus should
surely be on ensuring that only

a genuine untampered app can
access those assets by allowing
the app to prove its
authenticity. Trying to prevent
the tampering is insufficient
because if it succeeds, or if a
system is developed that can
spoof the app communication, it
is undetectable by the server.

Transport Level Security (TLS)

Mutual TLS attempts to
establish two-way trust between
the client mobile app and the
server. This is achieved by
installing a custom certificate
(with a private key) on the
mobile device itself. Only
clients with access to the
client side certificate are
able to successfully initiate
the mutual TLS session.
Unfortunately, this approach
has the same drawback as other
attempts to conceal secret
credentials inside the app. The
app is subject to analysis and
reverse engineering by
attackers who are able to
extract the certificate from
the mobile app and then embed
it into a malicious application
that can successfully initiate
a mutual TLS session.

API Keys

Existing approaches embed
security credentials, such as
an API key, into the app itself
and these are relatively simple
to reverse engineer by an
attacker. In many cases, no
attempt is made to conceal the
key and widely available open
source analysis tools can
easily extract it. Once the key
is available, it can be reused
in a malicious application or
script to gain access to the
API. In some cases the API key
or access credentials can be
trivially extracted by using a

MITM proxy software suite to
observe the communication
between the mobile app and the
server. More sophisticated
implementations never
communicate the key directly,
but use an HMAC implementation
(message authentication code
involving a cryptographic hash
function) on the client side to
show that the key is known.
However since a static key
still exists, it is still
subject to reverse engineering.
Server side mitigations may
rate-limit the number of
requests per second that use
the same API key, but this does
not fundamentally stop data
exfiltration or other attacks –
it simply slows down the rate
at which it can happen. Hackers
may probe the API endpoints to
find vulnerabilities in your
security logic, or to find
potential code injection
vulnerabilities, and this may
be even more serious in terms
of gaining access to your
network and customer data.

Mobile apps typically access
digital assets on your servers
using APIs. The backend API
servers may have access to
sensitive corporate information
and it is critical that
appropriate security measures
are put in place to keep them
secure.
	

How Haltdos Mobile App
Protection Works

The secret to create a secure
API channel is for genuine apps
to be able to identify
themselves to backend servers,
i.e. a positive trust model to
authenticate genuine apps. In
other words, the server needs
to be able to trust that it is
communicating with a true
client mobile app, rather than
with something else that is
trying to impersonate typical
app communication.

The Haltdos service uses a
challenge-response
cryptographic protocol allowing
a server to establish the
veracity of a connecting client
app. This approach is not
dependent upon any secret
embedded inside the app and
thus fundamentally different to
other solutions. The integrity
of the app is dynamically
measured to establish what it
is, not what it has in the form
of a static secret. Haltdos
authenticates app instances,
not users.

App authentication provides an
additional layer of protection
that can be used alongside your
existing authentication and
authorization methods. By
integrating the Haltdos SDK
into your mobile app, the API
requests it generates can
include a special token in the
header. A simple change in your
backend API endpoint will check
the presence of valid tokens
for each API request and any
requests not containing a valid
token are simply rejected. With
this protection in place a
hacker can’t launch scripts or
individual probing requests
against your API. All their
requests will be immediately
rejected.

Haltdos WAF solution that
handles requests from apps and
determines the authenticity of
the app. It does
this using a challenge-response
protocol, built upon
established and trusted
underlying cryptography, which
ensures a live interaction and
prevents any attempts to replay
a previous response.

The simple SDK library is
embedded into the app itself.
This is easily added to the app
development project and support
is provided for a wide range of
different app development
frameworks. The SDK provides a
method to obtain an Haltdos
token that can be added to the
headers of API requests that
are to be protected. Behind the
scenes, the SDK automatically
connects to Haltdos WAF
solution when necessary and
performs the integrity check.
If the integrity check passes
then the app is issued with a
time limited token by the cloud
service. The integrity process
only needs to be repeated if
the token is about to expire.

By adding Haltdos to your
security architecture, you
can be sure that mobile app
instances in the wild will be
authenticated, on top of your
regular user authentication and
connection encryption, further
reducing risks of application
layer attacks. The Haltdos
positive authentication model
allows genuine app requests to
go through while allowing you
to focus on actual threats.
Untrusted soft- ware agents,
such as attacker scripts or
modified apps, are unable to
generate valid tokens and are
immediately rejected. Since
Haltdos does not rely on hiding
a secret, such as a static API
key, traditional reverse

engineering techniques used by
attackers are ineffective

SDK and Tokens

Haltdos is based on the concept
of software attestation. It
allows your apps to uniquely
identify themselves as
the genuine, untampered
software images you originally
published. In exchange for this
proof the app is granted
a token which can then be
presented to your API with each
request. Your server side
implementation can then
differentiate between requests
from known apps, which will
contain a valid token, and
requests from unknown sources.
Haltdos does not interfere with
any of the other traffic
between the client mobile app
and the server. The tokens are
very quick to validate,
ensuring minimal impact on the
latency of API requests made by
the app.

The developer interface to the
Haltdos SDK is a method to
obtain a token. These tokens
have a short lifespan of a few
minutes in order to mitigate
against any potential of theft.
If there is currently no valid
token then the SDK initiates
the process of communicating
with Haltdos WAF to perform the
integrity check to obtain a new
token. Subsequent calls to the
method made while there is
still a valid token returns the
cached version, resulting in
very little overhead.

When the SDK requires a new
token it begins the attestation
process by requesting a random
value (nonce) from the Haltdos
WAF which it uses to seed the
signature hash of the integrity
check. Running heavily
obfuscated and defended code,

the integrity of the Haltdos
SDK itself is measured along
with the rest of the app
content. The combined
cryptographic hash is sensitive
to any change in the app or the
code used to measure it. Since
the hash is seeded with the
nonce value it will always be
unique and cannot be replayed
by an attacker. This resulting
dynamic app signature is sent
to the Haltdos WAF as part of a
token request along with other
information about the app and
the device it is running on.

Since the Haltdos WAF knows the
set of registered good apps it
is able to perform the same
calculation as the Haltdos SDK.
If the dynamic app signature
reported by the SDK is
consistent with a registered
app and the other security
checks pass, then the issued
token will be signed with a
secret associated with the
customer account. If not, the
token is still issued but is
not signed correctly. Because
the app itself does not know
the secret it does not know
whether it passed or failed the
integrity check making it
difficult for anyone to reverse
engineer the protocol.

Adding Haltdos to your iOS or
Android app is a straight-
forward process and can be
easily integrated into most
development flows.

Once registered, the app can be
published as normal. Since
Haltdos checks for changes in
the app’s signature to detect
app repackaging, it is
important to repeat the
registration process every time
you release a new version of
the app.

Solution Benefits

Haltdos Mobile App Protection
has been designed for minimal
impact on quality of service,
user experience, and service
load.

Low Overhead

The integrity checking process
built into the Haltdos SDK is
designed to be efficient and
highly tamper resistant.

When an authenticity check is
needed, it takes less than
100ms of compute time on
current mobile devices,
therefore not impacting battery
life. Each authenticity check
requires two endpoint
transactions to Haltdos WAF
servers. The messages and their
responses have been optimized
for length so that the impact
on both battery life and data
usage is minimized.

Ease of Integration

Haltdos can easily integrate
into new or existing apps. The
Haltdos SDK provides a simple
interface for obtaining a token
that can be added to the
headers of API requests without
the developer needing to know
details of how the app
integrity measurement is done.
The entire integration process
shouldn’t take more than a few
hours.

Anti-Automation

APIs are bedrock for Mobile
Apps. These APIs are also
consumed by other legitimate
clients such as WebApp, Thin
Clients, etc. As all the
business logic resides in the
API backend system, the APIs
are constantly under various
types of automated attack.

Techniques like captcha and
behavioural analysis help
prevent automated attacks for
WebApp. However, the same is
not possible for Mobile Apps.
Employing mobile app specific
rules and behaviours can result
in false positives and affect
the functioning and utility of
mobile apps and often
frustration for legitimate
users.

Haltdos provides a trusted
method for apps to positively
identify themselves to your API
allowing better traffic
filtration to backend servers.
Valid apps which are registered
with Haltdos WAF are
dynamically issued a short-
lived token which is then sent
with each request to your API.
Traffic with valid tokens is
from known apps and can be
prioritized.

App Legitimacy

In some cases, an app used to
access an online service may be
tampered with in some way. This
might be in the form of a one-
off modification by an
individual hacker or a tampered
app being repackaged and
distributed to many users. In
the latter case there is the
possibility that a large number
of your app users are accessing
your service using an
unofficial client mobile app
over which you have no control.
Any secrets or credentials
embedded inside the app will
have been compromised and are
being used to access the online
service. Moreover, these will
be the same secrets or
credentials used by the
official version of the app. So
if you revoke these credentials
to block access to the tampered
app, then you will also block
your legitimate users. Even if

you manage this transition
smoothly, the updated secrets
are likely to be stolen in
exactly the same way again.

Some of these threats are
targeted at the owners of
mobile devices. Many apps
depend on ad revenue as an
income stream and fake apps
have a big revenue impact. More
indirect effects can be on a
company’s reputation if user
credentials are stolen or the
perception is that the
developers write unreliable,
ad-infested or resource hungry
apps. Fake apps might also gain
access to web services accessed
by the genuine app, such as
analytics, usage information or
scoring for online games. This
data then becomes polluted and
less usable for real app users.

Haltdos Mobile App Protection
is a way to prevent successful
repackaging of apps which use
web services to provide some of
their capabilities. In a
process analogous to user
authentication, the Haltdos
Mobile SDK integrates with the
app and provides a mechanism to
verify the authenticity of the
code being used to access an
API. By positively identifying
traffic from genuine apps,
attempts to use the API from
repackaged apps or other
unofficial clients can be
blocked. Fake or tampered apps
are simply unable to access any
of the features provided by the
app servers.

Conclusion

The world is changing and
traditional security measures
are no longer sufficient to
protect mobile API connections
because they still are
vulnerable to exploits such as
Man-in-the-Middle attacks,

reverse engineering, API key
extraction, etc. They only
focus on stopping an attack
already in process.

Haltdos Mobile App Protection
starts where the request
originates - at the app.

Working with other security
protocols, Haltdos helps build
a true end-to-end API
environment that can be
trusted. By identifying,
verifying and certifying that
only your mobile apps, running
in untampered environments and
communicating over secured
channels, can access your APIs
and cloud services, your
valuable and sensitive assets
stay safe and secure.

